Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2970856994575119764711 ~2002
2971160515942321039 ~1997
2971317595942635199 ~1997
2971330795942661599 ~1997
2971408915942817839 ~1997
297152657416013719910 ~1999
297153601178292160710 ~1998
297170977178302586310 ~1998
2971804795943609599 ~1997
2971868995943737999 ~1997
297189679297189679110 ~1999
2972017315944034639 ~1997
2972025715944051439 ~1997
2972033635944067279 ~1997
297203747237762997710 ~1999
2972151115944302239 ~1997
2972221195944442399 ~1997
2972251195944502399 ~1997
2972376835944753679 ~1997
2972460835944921679 ~1997
297246869713392485710 ~2000
2972494435944988879 ~1997
297250561178350336710 ~1998
2972657395945314799 ~1997
2972756035945512079 ~1997
Exponent Prime Factor Digits Year
2972786995945573999 ~1997
297284501178370700710 ~1998
2972917195945834399 ~1997
2972949835945899679 ~1997
297308717178385230310 ~1998
297308909237847127310 ~1999
297310241178386144710 ~1998
297323413178394047910 ~1998
2973242995946485999 ~1997
297333461178400076710 ~1998
297343499237874799310 ~1999
2973495115946990239 ~1997
297357383713657719310 ~2000
2973620635947241279 ~1997
2973626035947252079 ~1997
2973637435947274879 ~1997
2973652795947305599 ~1997
2973694195947388399 ~1997
2973759715947519439 ~1997
2973801835947603679 ~1997
2973821035947642079 ~1997
2973865435947730879 ~1997
2973913435947826879 ~1997
2973954715947909439 ~1997
2974046035948092079 ~1997
Exponent Prime Factor Digits Year
297420377237936301710 ~1999
2974307995948615999 ~1997
2974329235948658479 ~1997
2974392115948784239 ~1997
2974427035948854079 ~1997
2974440715948881439 ~1997
2974505395949010799 ~1997
2974917835949835679 ~1997
2974926595949853199 ~1997
2975007835950015679 ~1997
297510757178506454310 ~1998
297515377178509226310 ~1998
297516853476026964910 ~1999
2975216395950432799 ~1997
2975290315950580639 ~1997
297531847476050955310 ~1999
2975349595950699199 ~1997
2975446195950892399 ~1997
297557773178534663910 ~1998
297562277238049821710 ~1999
2975627172618551909711 ~2001
2975650915951301839 ~1997
2975775235951550479 ~1997
2975901715951803439 ~1997
2975933395951866799 ~1997
Exponent Prime Factor Digits Year
2976215035952430079 ~1997
2976299635952599279 ~1997
2976345235952690479 ~1997
2976599635953199279 ~1997
2976636835953273679 ~1997
2976714835953429679 ~1997
2976900835953801679 ~1997
2977056715954113439 ~1997
2977100515954201039 ~1997
2977174195954348399 ~1997
2977552315955104639 ~1997
2977610635955221279 ~1997
2977675315955350639 ~1997
297767549238214039310 ~1999
2977718635955437279 ~1997
2977875595955751199 ~1997
2977897435955794879 ~1997
2977960435955920879 ~1997
2978021395956042799 ~1997
2978039635956079279 ~1997
2978093395956186799 ~1997
2978164795956329599 ~1997
2978204995956409999 ~1997
297822713178693627910 ~1998
2978274595956549199 ~1997
Home
4.768.925 digits
e-mail
25-05-04