Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
167210413100326247910 ~1996
1672109513344219039 ~1995
167211467133769173710 ~1997
167214799568530316710 ~1998
167218607434768378310 ~1998
1672191593344383199 ~1995
167219951133775960910 ~1997
1672279793344559599 ~1995
167229607267567371310 ~1997
1672299113344598239 ~1995
167230031133784024910 ~1997
1672303793344607599 ~1995
167231033100338619910 ~1996
1672314113344628239 ~1995
1672337393344674799 ~1995
1672431833344863679 ~1995
167247097100348258310 ~1996
1672522793345045599 ~1995
167254117100352470310 ~1996
1672552793345105599 ~1995
167262703167262703110 ~1997
1672644593345289199 ~1995
1672787633345575279 ~1995
167281573100368943910 ~1996
1672859993345719999 ~1995
Exponent Prime Factor Digits Year
1672865033345730079 ~1995
1672939793345879599 ~1995
167294189401506053710 ~1998
1672983113345966239 ~1995
1672985033345970079 ~1995
1673024033346048079 ~1995
167307533401538079310 ~1998
1673099513346199039 ~1995
167310089501930267110 ~1998
167311589133849271310 ~1997
167312473267699956910 ~1997
1673188313346376639 ~1995
1673254433346508879 ~1995
1673279393346558799 ~1995
1673288033346576079 ~1995
167330257100398154310 ~1996
167330357133864285710 ~1997
167330417100398250310 ~1996
1673304593346609199 ~1995
167331077100398646310 ~1996
1673315393346630799 ~1995
1673317793346635599 ~1995
1673319593346639199 ~1995
167334703167334703110 ~1997
1673355833346711679 ~1995
Exponent Prime Factor Digits Year
167335997100401598310 ~1996
1673412113346824239 ~1995
1673445593346891199 ~1995
1673509793347019599 ~1995
167352197100411318310 ~1996
1673536193347072399 ~1995
1673547113347094239 ~1995
1673559593347119199 ~1995
1673571593347143199 ~1995
1673580833347161679 ~1995
1673671313347342639 ~1995
1673684033347368079 ~1995
1673695193347390399 ~1995
1673704193347408399 ~1995
1673707193347414399 ~1995
1673740193347480399 ~1995
1673756993347513999 ~1995
1673794793347589599 ~1995
1673814713347629439 ~1995
1673834393347668799 ~1995
167385511167385511110 ~1997
167388421100433052710 ~1996
167388973100433383910 ~1996
1673896433347792879 ~1995
1673920193347840399 ~1995
Exponent Prime Factor Digits Year
1673937611473065096911 ~1999
1673979113347958239 ~1995
167402561133922048910 ~1997
1674069233348138479 ~1995
1674137033348274079 ~1995
1674169793348339599 ~1995
167426249234396748710 ~1997
1674280313348560639 ~1995
1674308033348616079 ~1995
167439317234415043910 ~1997
1674419033348838079 ~1995
167442973100465783910 ~1996
1674493193348986399 ~1995
1674503033349006079 ~1995
1674521993349043999 ~1995
1674600713349201439 ~1995
1674614033349228079 ~1995
1674662033349324079 ~1995
167469353100481611910 ~1996
167474767267959627310 ~1997
1674776033349552079 ~1995
1674797033349594079 ~1995
1674818513349637039 ~1995
167483891133987112910 ~1997
167489557100493734310 ~1996
Home
4.888.230 digits
e-mail
25-06-29