Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1048542736291256399 ~1995
1048569592097139199 ~1994
1048637632097275279 ~1994
1048652632097305279 ~1994
1048664032097328079 ~1994
1048709392097418799 ~1994
1048713232097426479 ~1994
104874079356571868710 ~1997
1048744312097488639 ~1994
104882779608320118310 ~1997
1048835392097670799 ~1994
1048845832097691679 ~1994
1048855912097711839 ~1994
1048868392097736799 ~1994
1048873792097747599 ~1994
1048876312097752639 ~1994
104889451188801011910 ~1996
1048901992097803999 ~1994
1048907698391261539 ~1995
1049018998392151939 ~1995
104903723839229784110 ~1998
1049053216294319279 ~1995
1049088776294532639 ~1995
104911351104911351110 ~1995
104915179251796429710 ~1996
Exponent Prime Factor Digits Year
1049222992098445999 ~1994
1049224312098448639 ~1994
1049224792098449599 ~1994
1049225818393806499 ~1995
1049265178394121379 ~1995
1049268592098537199 ~1994
1049347432098694879 ~1994
1049357512098715039 ~1994
1049364832098729679 ~1994
104942363272850143910 ~1996
1049444816296668879 ~1995
1049445493337236658311 ~1999
1049500312099000639 ~1994
104951731188913115910 ~1996
1049523832099047679 ~1994
104953613146935058310 ~1996
1049579392099158799 ~1994
1049591992099183999 ~1994
1049610376297662239 ~1995
104961749146946448710 ~1996
104963519188934334310 ~1996
1049641312099282639 ~1994
1049674912099349839 ~1994
1049689432099378879 ~1994
1049700232099400479 ~1994
Exponent Prime Factor Digits Year
1049702336298213999 ~1995
1049723113023202556911 ~1999
1049726392099452799 ~1994
1049747632099495279 ~1994
1049751592099503199 ~1994
1049753032099506079 ~1994
1049758312099516639 ~1994
1049841232099682479 ~1994
104984839104984839110 ~1995
1049864392099728799 ~1994
104986879755905528910 ~1997
104988931104988931110 ~1995
1049906032099812079 ~1994
1049937976299627839 ~1995
1049987392099974799 ~1994
1050020392100040799 ~1994
1050024592100049199 ~1994
1050029512100059039 ~1994
105003919420015676110 ~1997
1050087592100175199 ~1994
1050110512100221039 ~1994
1050117592100235199 ~1994
1050122032100244079 ~1994
1050144112100288239 ~1994
1050145312100290639 ~1994
Exponent Prime Factor Digits Year
1050157678401261379 ~1995
1050163432100326879 ~1994
105020683105020683110 ~1995
1050209336301255999 ~1995
1050261376301568239 ~1995
1050272392100544799 ~1994
105029467105029467110 ~1995
105030859189055546310 ~1996
1050313312100626639 ~1994
1050357736302146399 ~1995
1050404992100809999 ~1994
1050424192100848399 ~1994
1050475312100950639 ~1994
1050482992100965999 ~1994
1050514312101028639 ~1994
1050569278404554179 ~1995
1050571312101142639 ~1994
1050578392101156799 ~1994
1050589376303536239 ~1995
1050639712101279439 ~1994
1050655016303930079 ~1995
105066679672426745710 ~1997
1050672112101344239 ~1994
105070321168112513710 ~1996
105074887105074887110 ~1995
Home
4.768.925 digits
e-mail
25-05-04