Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1018717798149742339 ~1995
1018727032037454079 ~1994
1018792016112752079 ~1995
1018795792037591599 ~1994
10188469110697892555112 ~2000
1018902592037805199 ~1994
1018960432037920879 ~1994
1019004736114028399 ~1995
1019067232038134479 ~1994
1019090512038181039 ~1994
1019092432038184879 ~1994
1019128192038256399 ~1994
1019150032038300079 ~1994
101916631101916631110 ~1995
1019168032038336079 ~1994
1019194312038388639 ~1994
1019205832038411679 ~1994
101920747101920747110 ~1995
1019211592038423199 ~1994
1019228392038456799 ~1994
1019239312038478639 ~1994
1019247232038494479 ~1994
1019249518153996099 ~1995
1019269312038538639 ~1994
1019274712038549439 ~1994
Exponent Prime Factor Digits Year
1019280232038560479 ~1994
1019291536115749199 ~1995
1019336098154688739 ~1995
1019344192038688399 ~1994
1019348032038696079 ~1994
1019350792038701599 ~1994
1019359792038719599 ~1994
1019361832038723679 ~1994
1019372392038744799 ~1994
101942419101942419110 ~1995
101942537142719551910 ~1996
1019440976116645839 ~1995
1019481832038963679 ~1994
1019487832038975679 ~1994
1019511832039023679 ~1994
1019554378156434979 ~1995
1019558576117351439 ~1995
1019570818156566499 ~1995
1019581192039162399 ~1994
101960129632152799910 ~1997
1019624032039248079 ~1994
1019636632039273279 ~1994
1019648512039297039 ~1994
1019705518157644099 ~1995
1019734336118405999 ~1995
Exponent Prime Factor Digits Year
101975009142765012710 ~1996
1019783512039567039 ~1994
1019804512039609039 ~1994
1019808976118853839 ~1995
1019831098158648739 ~1995
1019831632039663279 ~1994
1019839616119037679 ~1995
1019841592039683199 ~1994
1019842378158738979 ~1995
1019848912039697839 ~1994
1019880112039760239 ~1994
1019895232039790479 ~1994
1019899912039799839 ~1994
1019905192039810399 ~1994
1019933576119601439 ~1995
1019973232039946479 ~1994
1019990632039981279 ~1994
101999197163198715310 ~1996
1020001912040003839 ~1994
1020010432040020879 ~1994
1020017936120107599 ~1995
1020035632040071279 ~1994
102003947265210262310 ~1996
1020039712040079439 ~1994
1020046912040093839 ~1994
Exponent Prime Factor Digits Year
1020060712040121439 ~1994
1020106312040212639 ~1994
1020156592040313199 ~1994
1020193432040386879 ~1994
1020194098161552739 ~1995
1020198112040396239 ~1994
1020247312040494639 ~1994
1020254032040508079 ~1994
102028193142839470310 ~1996
102031067489749121710 ~1997
1020312112040624239 ~1994
1020319312040638639 ~1994
1020340816122044879 ~1995
1020346432040692879 ~1994
1020354898162839139 ~1995
1020410032040820079 ~1994
1020439336122635999 ~1995
1020448432040896879 ~1994
1020457912040915839 ~1994
1020478736122872399 ~1995
1020493312040986639 ~1994
1020531112041062239 ~1994
1020544618164356899 ~1995
1020547792041095599 ~1994
1020563512041127039 ~1994
Home
4.768.925 digits
e-mail
25-05-04