Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1002914032005828079 ~1993
1002917878023342979 ~1995
1002924778023398179 ~1995
1002926632005853279 ~1993
1002957592005915199 ~1993
1003084792006169599 ~1993
1003086712006173439 ~1993
1003115536018693199 ~1995
1003123792006247599 ~1993
1003159312006318639 ~1993
1003162671765566299311 ~1998
1003212832006425679 ~1993
1003222798025782339 ~1995
1003249792006499599 ~1993
1003259216019555279 ~1995
1003261192006522399 ~1993
1003269832006539679 ~1993
1003274992006549999 ~1993
1003302112006604239 ~1993
1003334512006669039 ~1993
1003383232006766479 ~1993
1003391032006782079 ~1993
1003394392006788799 ~1993
100341587501707935110 ~1997
1003525976021155839 ~1995
Exponent Prime Factor Digits Year
1003527536021165199 ~1995
1003585432007170879 ~1993
1003590712007181439 ~1993
100359907100359907110 ~1995
1003638832007277679 ~1993
1003654936021929599 ~1995
1003694992007389999 ~1993
1003698592007397199 ~1993
1003726312007452639 ~1993
1003745698029965539 ~1995
1003750912007501839 ~1993
1003755592007511199 ~1993
1003758232007516479 ~1993
1003771912007543839 ~1993
1003844992007689999 ~1993
1003856512007713039 ~1993
100387961321241475310 ~1996
1003936616023619679 ~1995
1003950832007901679 ~1993
1003975432007950879 ~1993
1004002078032016579 ~1995
1004015032008030079 ~1993
1004023432008046879 ~1993
100402411160643857710 ~1996
1004024992008049999 ~1993
Exponent Prime Factor Digits Year
1004029312008058639 ~1993
1004062192008124399 ~1993
100409611100409611110 ~1995
1004102632008205279 ~1993
1004112112008224239 ~1993
1004169712008339439 ~1993
100417607180751692710 ~1996
1004250232008500479 ~1993
1004257192008514399 ~1993
1004290192008580399 ~1993
100430761220947674310 ~1996
1004339416026036479 ~1995
1004351032008702079 ~1993
1004388232008776479 ~1993
1004401432008802879 ~1993
1004402392008804799 ~1993
1004446078035568579 ~1995
1004467432008934879 ~1993
1004476432008952879 ~1993
1004477998035823939 ~1995
100448923241077415310 ~1996
1004491792008983599 ~1993
100450351662972316710 ~1997
1004503792009007599 ~1993
1004510632009021279 ~1993
Exponent Prime Factor Digits Year
1004513032009026079 ~1993
1004551192009102399 ~1993
1004576032009152079 ~1993
100458671261192544710 ~1996
1004624512009249039 ~1993
100464443321486217710 ~1996
1004719912009439839 ~1993
1004731432009462879 ~1993
100474877562659311310 ~1997
1004764792009529599 ~1993
1004770991205725188111 ~1998
1004772616028635679 ~1995
1004773192009546399 ~1993
1004775898038207139 ~1995
1004799416028796479 ~1995
1004802832009605679 ~1993
1004821312009642639 ~1993
1004857192009714399 ~1993
1004865592009731199 ~1993
100486651160778641710 ~1996
100486663100486663110 ~1995
1004868112009736239 ~1993
1004874232009748479 ~1993
1004883832009767679 ~1993
1004887498039099939 ~1995
Home
4.768.925 digits
e-mail
25-05-04