Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
511439511022879039 ~1991
511444191022888399 ~1991
511446231022892479 ~1991
511448533068691199 ~1992
511453431022906879 ~1991
511454031022908079 ~1991
511484697160785679 ~1993
51149453890000482310 ~1996
511505715115057119 ~1993
511508573069051439 ~1992
511522911023045839 ~1991
511526031023052079 ~1991
511539231023078479 ~1991
511557297161802079 ~1993
511559631023119279 ~1991
511567191023134399 ~1991
511567791023135599 ~1991
511625991023251999 ~1991
511641111023282239 ~1991
511643573069861439 ~1992
511644711023289439 ~1991
511658391023316799 ~1991
511661631023323279 ~1991
511707111023414239 ~1991
511708311023416639 ~1991
Exponent Prime Factor Digits Year
511709391023418799 ~1991
511735373070412239 ~1992
511739391023478799 ~1991
511742511023485039 ~1991
511751391023502799 ~1991
511760874094086979 ~1993
511764013070584079 ~1992
511776711023553439 ~1991
511780311023560639 ~1991
51178847133065002310 ~1994
511789311023578639 ~1991
511801791023603599 ~1991
511806533070839199 ~1992
511815831023631679 ~1991
511826473930827289711 ~1998
511833231023666479 ~1991
511839591023679199 ~1991
51184247286631783310 ~1995
511846311023692639 ~1991
511851173071107039 ~1992
511853391023706799 ~1991
511866133071196799 ~1992
511866231023732479 ~1991
511867494094939939 ~1993
511871511023743039 ~1991
Exponent Prime Factor Digits Year
511874697166245679 ~1993
511876791023753599 ~1991
511910391023820799 ~1991
511915213071491279 ~1992
511915311023830639 ~1991
511917111023834239 ~1991
511928031023856079 ~1991
51194041112626890310 ~1994
511947231023894479 ~1991
511953591023907199 ~1991
511955031023910079 ~1991
511955238191283699 ~1993
511958694095669539 ~1993
511968133071808799 ~1992
511973511023947039 ~1991
511975191023950399 ~1991
511979879215637679 ~1994
511982391023964799 ~1991
511991031023982079 ~1991
511995591023991199 ~1991
511999213071995279 ~1992
511999878191997939 ~1993
512031714096253699 ~1993
512037831024075679 ~1991
512038614096308899 ~1993
Exponent Prime Factor Digits Year
512051838192829299 ~1993
512059191024118399 ~1991
512067773072406639 ~1992
512070591024141199 ~1991
512072031024144079 ~1991
512074213072445279 ~1992
512106111024212239 ~1991
512110311024220639 ~1991
512110794096886339 ~1993
512112111024224239 ~1991
512113791024227599 ~1991
512116911024233839 ~1991
512117391024234799 ~1991
512121591024243199 ~1991
512142831024285679 ~1991
512144511024289039 ~1991
512148111024296239 ~1991
512156631024313279 ~1991
512164799218966239 ~1994
512170311024340639 ~1991
512174991024349999 ~1991
51218183256090915110 ~1995
512190714097525699 ~1993
512210631024421279 ~1991
512211231024422479 ~1991
Home
5.187.277 digits
e-mail
25-11-17