Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
559665111119330239 ~1992
559670031119340079 ~1992
559685333358111999 ~1993
559689111119378239 ~1992
559696311119392639 ~1992
559698533358191199 ~1993
559700391119400799 ~1992
559700933358205599 ~1993
559715631119431279 ~1992
559717494477739939 ~1993
559726431119452879 ~1992
559727595597275919 ~1993
559745631119491279 ~1992
559751631119503279 ~1992
559760511119521039 ~1992
559775631119551279 ~1992
559783613358701679 ~1993
559798733358792399 ~1993
559810973358865839 ~1993
559823577837529999 ~1994
559834191119668399 ~1992
559842231119684479 ~1992
55985207145561538310 ~1994
559856031119712079 ~1992
559869711119739439 ~1992
Exponent Prime Factor Digits Year
559876933359261599 ~1993
559883235598832319 ~1993
559886511119773039 ~1992
559894431119788879 ~1992
559896231119792479 ~1992
559898631119797279 ~1992
559903911119807839 ~1992
559914831119829679 ~1992
55992361123183194310 ~1994
559936431119872879 ~1992
559952813359716879 ~1993
559974711119949439 ~1992
559980231119960479 ~1992
559992711119985439 ~1992
559996791119993599 ~1992
560005191120010399 ~1992
560016111120032239 ~1992
5600353713485651709712 ~1999
560040831120081679 ~1992
56004577268821969710 ~1995
560047311120094639 ~1992
560066031120132079 ~1992
560079231120158479 ~1992
560080311120160639 ~1992
560093991120187999 ~1992
Exponent Prime Factor Digits Year
56009869134423685710 ~1994
560104311120208639 ~1992
560112711120225439 ~1992
560131013360786079 ~1993
560131614481052899 ~1993
560133711120267439 ~1992
560145711120291439 ~1992
560153391120306799 ~1992
560159413360956479 ~1993
56016179504145611110 ~1996
56016691100830043910 ~1994
560176791120353599 ~1992
560194515601945119 ~1993
560205795602057919 ~1993
560207991120415999 ~1992
56021549134451717710 ~1994
560216391120432799 ~1992
560218911120437839 ~1992
560229711120459439 ~1992
560231391120462799 ~1992
560232831120465679 ~1992
560236914481895299 ~1993
560246511120493039 ~1992
560247133361482799 ~1993
560250591120501199 ~1992
Exponent Prime Factor Digits Year
560251573361509439 ~1993
560255031120510079 ~1992
560257791120515599 ~1992
560265831120531679 ~1992
56027549806796705710 ~1996
560328111120656239 ~1992
560333214482665699 ~1993
560333631120667279 ~1992
560362377845073199 ~1994
560380395603803919 ~1993
560398314483186499 ~1993
560405991120811999 ~1992
560435631120871279 ~1992
560454711120909439 ~1992
560455791120911599 ~1992
560477235604772319 ~1993
560481231120962479 ~1992
560483511120967039 ~1992
560487711120975439 ~1992
560489031120978079 ~1992
56049559100889206310 ~1994
56051269123312791910 ~1994
56052343134525623310 ~1994
560535831121071679 ~1992
560538831121077679 ~1992
Home
4.992.811 digits
e-mail
25-08-20