Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
509065911018131839 ~1991
509069631018139279 ~1991
509073591018147199 ~1991
509076013054456079 ~1992
509088594072708739 ~1993
509103613054621679 ~1992
509134911018269839 ~1991
509156991018313999 ~1991
509176311018352639 ~1991
509183394073467139 ~1993
509191613055149679 ~1992
509195994073567939 ~1993
509207991018415999 ~1991
509243994073951939 ~1993
509265111018530239 ~1991
509268294074146339 ~1993
509273391018546799 ~1991
509274773055648639 ~1992
509292675092926719 ~1993
509321178149138739 ~1993
509323791018647599 ~1991
509347311018694639 ~1991
509353311018706639 ~1991
509354631018709279 ~1991
50937193275060842310 ~1995
Exponent Prime Factor Digits Year
509374012852494456111 ~1997
509390391018780799 ~1991
509405533056433199 ~1992
509410431018820879 ~1991
509422911018845839 ~1991
509428911018857839 ~1991
509430231018860479 ~1991
509438333056629999 ~1992
509445111018890239 ~1991
509480031018960079 ~1991
509482791018965599 ~1991
509484591018969199 ~1991
509485431018970879 ~1991
509508774076070179 ~1993
509523533057141199 ~1992
509527191019054399 ~1991
509533213057199279 ~1992
509551813057310879 ~1992
509556294076450339 ~1993
509569911019139839 ~1991
509575311019150639 ~1991
509590191019180399 ~1991
509600814076806499 ~1993
509603631019207279 ~1991
509641431019282879 ~1991
Exponent Prime Factor Digits Year
509643111019286239 ~1991
509652591019305199 ~1991
509652831019305679 ~1991
509656791019313599 ~1991
509659791019319599 ~1991
509661591019323199 ~1991
509678031019356079 ~1991
509685591019371199 ~1991
509690631019381279 ~1991
50969423132520499910 ~1994
509699694077597539 ~1993
509701872742196060711 ~1997
509741391019482799 ~1991
509755311019510639 ~1991
509759991019519999 ~1991
509770791019541599 ~1991
509775711019551439 ~1991
509775831019551679 ~1991
509779911019559839 ~1991
509790591019581199 ~1991
509792173058753039 ~1992
509795031019590079 ~1991
509807031019614079 ~1991
509820231019640479 ~1991
509824791019649599 ~1991
Exponent Prime Factor Digits Year
509830133058980799 ~1992
509835111019670239 ~1991
509837031019674079 ~1991
509845791019691599 ~1991
509860938157774899 ~1993
509869311019738639 ~1991
509872431019744879 ~1991
50988163173359754310 ~1994
509907133059442799 ~1992
509910133059460799 ~1992
509911311019822639 ~1991
509922111019844239 ~1991
509923395099233919 ~1993
509960631019921279 ~1991
509974974079799779 ~1993
509982173059893039 ~1992
509985111019970239 ~1991
509989431019978879 ~1991
509998311019996639 ~1991
510004791020009599 ~1991
510026391020052799 ~1991
510032991020065999 ~1991
510046191020092399 ~1991
510047631020095279 ~1991
510054831020109679 ~1991
Home
4.888.230 digits
e-mail
25-06-29