Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
540636173243817039 ~1993
540641511081283039 ~1991
540666533243999199 ~1993
540673333244039999 ~1993
540674391081348799 ~1991
540685431081370879 ~1991
540714533244287199 ~1993
540723111081446239 ~1991
540727191081454399 ~1991
540727311081454639 ~1991
540732894325863139 ~1993
540757431081514879 ~1991
540763311081526639 ~1991
540773814326190499 ~1993
540780414326243299 ~1993
540781191081562399 ~1991
540782391081564799 ~1991
540789315407893119 ~1993
540796911081593839 ~1991
540799791081599599 ~1991
540806511081613039 ~1991
540819711081639439 ~1991
540826431081652879 ~1991
540836631081673279 ~1991
540856311081712639 ~1991
Exponent Prime Factor Digits Year
540861613245169679 ~1993
540866031081732079 ~1991
540870795408707919 ~1993
540879831081759679 ~1991
540887333245323999 ~1993
540893511081787039 ~1991
540895013245370079 ~1993
54089573335355352710 ~1995
540911533245469199 ~1993
540921231081842479 ~1991
540939111081878239 ~1991
540940311081880639 ~1991
540946395409463919 ~1993
540948013245688079 ~1993
540948111081896239 ~1991
540959391081918799 ~1991
540978711081957439 ~1991
540984591081969199 ~1991
540991191081982399 ~1991
541001814328014499 ~1993
541015613246093679 ~1993
541018933246113599 ~1993
541025391082050799 ~1991
541038591082077199 ~1991
541053711082107439 ~1991
Exponent Prime Factor Digits Year
541065231082130479 ~1991
541069578657113139 ~1994
541081791082163599 ~1991
541103511082207039 ~1991
541104711082209439 ~1991
541116111082232239 ~1991
541134831082269679 ~1991
541137231082274479 ~1991
541150311082300639 ~1991
54115679173170172910 ~1994
541190631082381279 ~1991
541207431082414879 ~1991
541212973247277839 ~1993
541216431082432879 ~1991
541219791082439599 ~1991
541234311082468639 ~1991
541249431082498879 ~1991
541252494330019939 ~1993
541261791082523599 ~1991
541265031082530079 ~1991
541272438660358899 ~1994
541275111082550239 ~1991
541282191082564399 ~1991
541283391082566799 ~1991
541314479743660479 ~1994
Exponent Prime Factor Digits Year
541329831082659679 ~1991
541330431082660879 ~1991
541353111082706239 ~1991
54135673119098480710 ~1994
54138913508905782310 ~1995
541390311082780639 ~1991
541396431082792879 ~1991
541407591082815199 ~1991
541420879745575679 ~1994
541432311082864639 ~1991
541449711082899439 ~1991
541452711082905439 ~1991
541454391082908799 ~1991
541474813248848879 ~1993
541474911082949839 ~1991
541498911082997839 ~1991
541501431083002879 ~1991
541509231083018479 ~1991
541511511083023039 ~1991
541523631083047279 ~1991
541528974332231779 ~1993
541554591083109199 ~1991
541569231083138479 ~1991
541584533249507199 ~1993
541603333249619999 ~1993
Home
4.768.925 digits
e-mail
25-05-04