Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
503647573021885439 ~1992
503654571490817527311 ~1996
503655013021930079 ~1992
503656311007312639 ~1991
503658773021952639 ~1992
503659613021957679 ~1992
503661711007323439 ~1991
503667591007335199 ~1991
503668573022011439 ~1992
503674191007348399 ~1991
503683373022100239 ~1992
503683431007366879 ~1991
503688231007376479 ~1991
50368889120885333710 ~1994
503701911007403839 ~1991
503714391007428799 ~1991
503721111007442239 ~1991
503722911007445839 ~1991
503761973022571839 ~1992
503763231007526479 ~1991
503784111007568239 ~1991
50378651644846732910 ~1996
50380007241824033710 ~1995
503806791007613599 ~1991
503808711007617439 ~1991
Exponent Prime Factor Digits Year
503822475038224719 ~1993
503825391007650799 ~1991
503827938061246899 ~1993
503844733023068399 ~1992
503858991007717999 ~1991
503882933023297599 ~1992
503898773023392639 ~1992
503904231007808479 ~1991
503908911007817839 ~1991
503914431007828879 ~1991
503921279070582879 ~1993
503933031007866079 ~1991
503935431007870879 ~1991
50394053161260969710 ~1994
503965791007931599 ~1991
503966031007932079 ~1991
503972511007945039 ~1991
503986613023919679 ~1992
503991831007983679 ~1991
503999631007999279 ~1991
504004373024026239 ~1992
504004911008009839 ~1991
504012231008024479 ~1991
504014994032119939 ~1993
504062031008124079 ~1991
Exponent Prime Factor Digits Year
504068031008136079 ~1991
504072111008144239 ~1991
50409949201639796110 ~1994
504103875041038719 ~1993
504108133024648799 ~1992
504121431008242879 ~1991
504130911008261839 ~1991
50416001241996804910 ~1995
504166431008332879 ~1991
504170391008340799 ~1991
504171831008343679 ~1991
504175791008351599 ~1991
50419133151257399110 ~1994
504191631008383279 ~1991
504207918067326579 ~1993
504216613025299679 ~1992
504217431008434879 ~1991
504221991008443999 ~1991
504229191008458399 ~1991
504242874033942979 ~1993
504249111008498239 ~1991
504250191008500399 ~1991
504263031008526079 ~1991
504271191008542399 ~1991
504271311008542639 ~1991
Exponent Prime Factor Digits Year
504277911008555839 ~1991
504291111008582239 ~1991
504298431008596879 ~1991
504305991008611999 ~1991
504310911008621839 ~1991
50431267171466307910 ~1994
504345133026070799 ~1992
50434661242086372910 ~1995
504367191008734399 ~1991
504367911008735839 ~1991
504374173026245039 ~1992
50438477151315431110 ~1994
504395031008790079 ~1991
504404511008809039 ~1991
504415911008831839 ~1991
504422511008845039 ~1991
504428391008856799 ~1991
504436218070979379 ~1993
504456231008912479 ~1991
504459711008919439 ~1991
504460431008920879 ~1991
504482274035858179 ~1993
504488991008977999 ~1991
504499791008999599 ~1991
504500213027001279 ~1992
Home
4.888.230 digits
e-mail
25-06-29