Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
501059631002119279 ~1991
501062991002125999 ~1991
501075231002150479 ~1991
501080214008641699 ~1993
501089511002179039 ~1991
501089631002179279 ~1991
50109263130284083910 ~1994
501132231002264479 ~1991
501134031002268079 ~1991
501135413006812479 ~1992
501135591002271199 ~1991
501139973006839839 ~1992
501140631002281279 ~1991
501142311002284639 ~1991
501151191002302399 ~1991
501163494009307939 ~1993
501168231002336479 ~1991
501187911002375839 ~1991
501199911002399839 ~1991
501200991002401999 ~1991
501206631002413279 ~1991
501212991002425999 ~1991
501217191002434399 ~1991
501234591002469199 ~1991
501260235012602319 ~1993
Exponent Prime Factor Digits Year
501261591002523199 ~1991
501284391002568799 ~1991
501298791002597599 ~1991
501310013007860079 ~1992
501313911002627839 ~1991
501318111002636239 ~1991
501318711002637439 ~1991
501323391002646799 ~1991
501329031002658079 ~1991
501335631002671279 ~1991
501343791002687599 ~1991
501349191002698399 ~1991
501361431002722879 ~1991
501364311002728639 ~1991
501369591002739199 ~1991
501371631002743279 ~1991
501373191002746399 ~1991
501381894011055139 ~1993
501393591002787199 ~1991
501401511002803039 ~1991
501410511002821039 ~1991
501413413008480479 ~1992
501424137019937839 ~1993
501433613008601679 ~1992
501436013008616079 ~1992
Exponent Prime Factor Digits Year
501437391002874799 ~1991
501449479026090479 ~1993
501457431002914879 ~1991
501464574011716579 ~1993
501484911002969839 ~1991
501484933008909599 ~1992
501487791002975599 ~1991
501500991003001999 ~1991
501504973009029839 ~1992
501505333009031999 ~1992
501526311003052639 ~1991
501543711003087439 ~1991
501550431003100879 ~1991
501552231003104479 ~1991
501555195015551919 ~1993
50155681200622724110 ~1994
501566115015661119 ~1993
501568014012544099 ~1993
501568311003136639 ~1991
501570111003140239 ~1991
501571431003142879 ~1991
501572031003144079 ~1991
501574038025184499 ~1993
501585831003171679 ~1991
501619311003238639 ~1991
Exponent Prime Factor Digits Year
501658911003317839 ~1991
501682431003364879 ~1991
501684533010107199 ~1992
501702831003405679 ~1991
501703311003406639 ~1991
501703431003406879 ~1991
501709311003418639 ~1991
501713115017131119 ~1993
501722991003445999 ~1991
501723711003447439 ~1991
501727791003455599 ~1991
501732714013861699 ~1993
501743933010463599 ~1992
501763377024687199 ~1993
501763911003527839 ~1991
501767511003535039 ~1991
501775813010654879 ~1992
501784311003568639 ~1991
501793914014351299 ~1993
50180401110396882310 ~1994
501814191003628399 ~1991
501820311003640639 ~1991
501853191003706399 ~1991
501853515018535119 ~1993
501854511003709039 ~1991
Home
4.888.230 digits
e-mail
25-06-29