Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
502450431004900879 ~1991
502483911004967839 ~1991
502507431005014879 ~1991
502510791005021599 ~1991
502518795025187919 ~1993
502519191005038399 ~1991
50253083452277747110 ~1995
502536111005072239 ~1991
502563831005127679 ~1991
502565933015395599 ~1992
502572831005145679 ~1991
502573311005146639 ~1991
502584231005168479 ~1991
502596591005193199 ~1991
502614831005229679 ~1991
502616991005233999 ~1991
502617378041877939 ~1993
502622031005244079 ~1991
502624311005248639 ~1991
502635373015812239 ~1992
502649391005298799 ~1991
50264989392066914310 ~1995
502655031005310079 ~1991
502698413016190479 ~1992
502702813016216879 ~1992
Exponent Prime Factor Digits Year
502720911005441839 ~1991
502728111005456239 ~1991
502733933016403599 ~1992
502740711005481439 ~1991
502747431005494879 ~1991
502748631005497279 ~1991
502753311005506639 ~1991
502756333016537999 ~1992
50276587120663808910 ~1994
502770773016624639 ~1992
502776111005552239 ~1991
502779111005558239 ~1991
502790511005581039 ~1991
50280677241347249710 ~1995
502814173016885039 ~1992
50283043120679303310 ~1994
502844991005689999 ~1991
502845231005690479 ~1991
502849191005698399 ~1991
502855311005710639 ~1991
502857711005715439 ~1991
502862511005725039 ~1991
502871031005742079 ~1991
502881533017289199 ~1992
502906878046509939 ~1993
Exponent Prime Factor Digits Year
502907874023262979 ~1993
502908711005817439 ~1991
502924191005848399 ~1991
502932133017592799 ~1992
502932675029326719 ~1993
502939377041151199 ~1993
502959231005918479 ~1991
502965294023722339 ~1993
502980711005961439 ~1991
502997511005995039 ~1991
503008431006016879 ~1991
503020191006040399 ~1991
503034711006069439 ~1991
503036391006072799 ~1991
503067591006135199 ~1991
503067831006135679 ~1991
50306849311902463910 ~1995
503079973018479839 ~1992
503086791006173599 ~1991
503088711006177439 ~1991
503089431006178879 ~1991
503101374024810979 ~1993
503102511006205039 ~1991
503107191006214399 ~1991
503117991006235999 ~1991
Exponent Prime Factor Digits Year
503121831006243679 ~1991
503129631006259279 ~1991
503133831006267679 ~1991
503146995031469919 ~1993
503160231006320479 ~1991
503176911247878736911 ~1996
503179791006359599 ~1991
50318491211337662310 ~1994
503188373019130239 ~1992
503201213019207279 ~1992
503213631006427279 ~1991
503216511006433039 ~1991
503228933019373599 ~1992
503231773019390639 ~1992
503258574026068579 ~1993
503263191006526399 ~1991
503286675032866719 ~1993
503293191006586399 ~1991
503298474026387779 ~1993
503299431006598879 ~1991
503339533020037199 ~1992
503347974026783779 ~1993
503383038054128499 ~1993
503385831006771679 ~1991
503402991006805999 ~1991
Home
4.679.597 digits
e-mail
25-03-23