Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
511999878191997939 ~1993
512031714096253699 ~1993
512037831024075679 ~1991
512038614096308899 ~1993
512051838192829299 ~1993
512059191024118399 ~1991
512067773072406639 ~1992
512072031024144079 ~1991
512074213072445279 ~1992
512106111024212239 ~1991
512110311024220639 ~1991
512110794096886339 ~1993
512113791024227599 ~1991
512116911024233839 ~1991
512117391024234799 ~1991
512121591024243199 ~1991
512144511024289039 ~1991
512148111024296239 ~1991
512164799218966239 ~1994
512170311024340639 ~1991
512174991024349999 ~1991
51218183256090915110 ~1995
512190714097525699 ~1993
512210631024421279 ~1991
512211231024422479 ~1991
Exponent Prime Factor Digits Year
512212395122123919 ~1993
51221893153665679110 ~1994
512235591024471199 ~1991
512267391024534799 ~1991
512267511024535039 ~1991
512270511024541039 ~1991
512273031024546079 ~1991
512280591024561199 ~1991
512317995123179919 ~1993
512323191024646399 ~1991
512342991024685999 ~1991
512357631024715279 ~1991
512370831024741679 ~1991
512372391024744799 ~1991
512374191024748399 ~1991
512382231024764479 ~1991
512387031024774079 ~1991
512396511024793039 ~1991
51240881163970819310 ~1994
512411991024823999 ~1991
512419213074515279 ~1992
512426511024853039 ~1991
512431911024863839 ~1991
51243749194726246310 ~1994
51245507409964056110 ~1995
Exponent Prime Factor Digits Year
512471118199537779 ~1993
512480391352948229711 ~1996
512482311024964639 ~1991
512492391024984799 ~1991
512500911025001839 ~1991
512504031025008079 ~1991
512514111025028239 ~1991
512533791025067599 ~1991
512534391025068799 ~1991
512544591025089199 ~1991
512548911025097839 ~1991
512555511025111039 ~1991
512570511025141039 ~1991
512592777176298799 ~1993
512593911025187839 ~1991
512594511025189039 ~1991
512594514100756099
512605191025210399 ~1991
512625591025251199 ~1991
512636238202179699 ~1993
512649711025299439 ~1991
512650311025300639 ~1991
512661413075968479 ~1992
512663813075982879 ~1992
512673831025347679 ~1991
Exponent Prime Factor Digits Year
512686914101495299 ~1993
512690213076141279 ~1992
512725191025450399 ~1991
512748013076488079 ~1992
512763591025527199 ~1991
512764191025528399 ~1991
512768991025537999 ~1991
512776311025552639 ~1991
512805711025611439 ~1991
512823831025647679 ~1991
512830791025661599 ~1991
512905791025811599 ~1991
512915031025830079 ~1991
512916831025833679 ~1991
512925831025851679 ~1991
512933937181075039 ~1993
512939991025879999 ~1991
512953191025906399 ~1991
512960511025921039 ~1991
512976711025953439 ~1991
51300581410404648110 ~1995
513006733078040399 ~1992
513024231026048479 ~1991
513025614104204899 ~1993
513028431026056879 ~1991
Home
4.368.158 digits
e-mail
24-10-27