Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
50431267171466307910 ~1994
504345133026070799 ~1992
50434661242086372910 ~1995
504367191008734399 ~1991
504367911008735839 ~1991
504374173026245039 ~1992
50438477151315431110 ~1994
504404511008809039 ~1991
504415911008831839 ~1991
504428391008856799 ~1991
504436218070979379 ~1993
504456231008912479 ~1991
504460431008920879 ~1991
504488991008977999 ~1991
504499791008999599 ~1991
504500213027001279 ~1992
504506511009013039 ~1991
504510413027062479 ~1992
504519591009039199 ~1991
504527511009055039 ~1991
504538497063538879 ~1993
504539813027238879 ~1992
504569991009139999 ~1991
504583791009167599 ~1991
504584511009169039 ~1991
Exponent Prime Factor Digits Year
504587631009175279 ~1991
504590631009181279 ~1991
504598791009197599 ~1991
504602094036816739 ~1993
504603831009207679 ~1991
504619911009239839 ~1991
504620991009241999 ~1991
504626631009253279 ~1991
504634813027808879 ~1992
504635031009270079 ~1991
504636075046360719 ~1993
504637191009274399 ~1991
504640791009281599 ~1991
504641631009283279 ~1991
504675231009350479 ~1991
504745911009491839 ~1991
50474843131234591910 ~1994
504752631009505279 ~1991
504779631009559279 ~1991
504789773028738639 ~1992
504802333028813999 ~1992
504811911009623839 ~1991
504830391009660799 ~1991
504841911009683839 ~1991
504849711009699439 ~1991
Exponent Prime Factor Digits Year
50488829151466487110 ~1994
504963111009926239 ~1991
504975414039803299 ~1993
504982911009965839 ~1991
504992031009984079 ~1991
505009791010019599 ~1991
505010573030063439 ~1992
505012191010024399 ~1991
505026711010053439 ~1991
505037511010075039 ~1991
505037631010075279 ~1991
505072791010145599 ~1991
505099191010198399 ~1991
505143013030858079 ~1992
505143079092575279 ~1993
505166514041332099 ~1993
505173591010347199 ~1991
505189311010378639 ~1991
505190991010381999 ~1991
505199991010399999 ~1991
505219279093946879 ~1993
505230591010461199 ~1991
505234674041877379 ~1993
505235631010471279 ~1991
505239474041915779 ~1993
Exponent Prime Factor Digits Year
505247115052471119 ~1993
505250874042006979 ~1993
505268511010537039 ~1991
505268871455174345711 ~1996
505269231010538479 ~1991
505298511010597039 ~1991
505303014042424099 ~1993
50530537121273288910 ~1994
505335231010670479 ~1991
505340514042724099 ~1993
505345791010691599 ~1991
50534881111176738310 ~1994
505358874042870979 ~1993
505373097075223279 ~1993
505373511010747039 ~1991
505376391010752799 ~1991
505397991010795999 ~1991
505406213032437279 ~1992
505425114043400899 ~1993
505436511010873039 ~1991
505446711010893439 ~1991
505448631010897279 ~1991
505459911010919839 ~1991
50546201151638603110 ~1994
50546299242622235310 ~1995
Home
4.368.158 digits
e-mail
24-10-27