Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
30173063603461278 ~1989
30173399603467998 ~1989
30174383603487678 ~1989
301754171810525039 ~1991
30176543603530878 ~1989
30176771603535438 ~1989
30177071603541438 ~1989
30177923603558478 ~1989
30178063102605414310 ~1992
30178523603570478 ~1989
30178919603578398 ~1989
30178943603578878 ~1989
301791539657328979 ~1992
30179483603589678 ~1989
301795216639494639 ~1992
30180191603603838 ~1989
30180443603608878 ~1989
30180803603616078 ~1989
301808473018084719 ~1991
301814574225403999 ~1991
301815531810893199 ~1991
30181583603631678 ~1989
30181799603635998 ~1989
30182363603647278 ~1989
30182723603654478 ~1989
Exponent Prime Factor Digits Year
30182783603655678 ~1989
30183203603664078 ~1989
30183431603668638 ~1989
30183911603678238 ~1989
301840317847848079 ~1992
30184391603687838 ~1989
30184631603692638 ~1989
30185159603703198 ~1989
30185219603704398 ~1989
30185339603706798 ~1989
30185411603708238 ~1989
301854477848216239 ~1992
30185483603709678 ~1989
30185843603716878 ~1989
30185951603719038 ~1989
30186239603724798 ~1989
30186323603726478 ~1989
301869731811218399 ~1991
30187739603754798 ~1989
30187919603758398 ~1989
301888277245318499 ~1992
30189959603799198 ~1989
30190463603809278 ~1989
30190991603819838 ~1989
301918792415350339 ~1991
Exponent Prime Factor Digits Year
301922097246130179 ~1992
30192551603851038 ~1989
301927393019273919 ~1991
301929715434734799 ~1992
30193151603863038 ~1989
301931872415454979 ~1991
30193463603869278 ~1989
30193571603871438 ~1989
30193703603874078 ~1989
301938371811630239 ~1991
30194231603884638 ~1989
30194579603891598 ~1989
301950411811702479 ~1991
30195059603901198 ~1989
30195083603901678 ~1989
30195839603916798 ~1989
30195983603919678 ~1989
30196031603920638 ~1989
30196151144941524910 ~1993
301965892415727139 ~1991
301968971811813839 ~1991
30196979603939598 ~1989
30197003603940078 ~1989
30197351603947038 ~1989
30198071603961438 ~1989
Exponent Prime Factor Digits Year
301981012415848099 ~1991
301982571811895439 ~1991
301990792415926339 ~1991
30199343603986878 ~1989
30199451603989038 ~1989
30199651126838534310 ~1993
301996939059907919 ~1992
30200003604000078 ~1989
30200099604001998 ~1989
30200591604011838 ~1989
302006571812039439 ~1991
30201023604020478 ~1989
30201371604027438 ~1989
30201551604031038 ~1989
302015512416124099
30201959604039198 ~1989
30202019604040398 ~1989
30202163604043278 ~1989
30202391604047838 ~1989
30202439604048798 ~1989
30203219604064398 ~1989
30203963604079278 ~1989
30204599604091998 ~1989
30205403604108078 ~1989
30206063604121278 ~1989
Home
4.768.925 digits
e-mail
25-05-04