Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
29155151583103038 ~1989
291553936414186479 ~1992
29155583583111678 ~1989
291556134081785839 ~1991
29155631583112638 ~1989
291558592332468739 ~1991
29155979583119598 ~1989
29156219583124398 ~1989
29157059583141198 ~1989
29157899583157998 ~1989
29157911583158238 ~1989
29158037139958577710 ~1993
29158163583163278 ~1989
29158691583173838 ~1989
29159303583186078 ~1989
29159759583195198 ~1989
29159939583198798 ~1989
291601211749607279 ~1990
29160311583206238 ~1989
29160959583219198 ~1989
29161199583223998 ~1989
291613131749678799 ~1990
29161403583228078 ~1989
29162519583250398 ~1989
29163779583275598 ~1989
Exponent Prime Factor Digits Year
29163791583275838 ~1989
291639712333117699 ~1991
29164403583288078 ~1989
29164451583289038 ~1989
291646792333174339 ~1991
291652672333221379 ~1991
29165819583316398 ~1989
291658611749951679 ~1990
29165963583319278 ~1989
291661875249913679 ~1992
291673492333387939 ~1991
291674296416834399 ~1992
29167811583356238 ~1989
29168159583363198 ~1989
29168231583364638 ~1989
291686771750120639 ~1990
29168759583375198 ~1989
29169191583383838 ~1989
29169383583387678 ~1989
291695094083731279 ~1991
291695211750171279 ~1990
29169551583391038 ~1989
29169863583397278 ~1989
291699712333597699 ~1991
29170703583414078 ~1989
Exponent Prime Factor Digits Year
29170919583418398 ~1989
29170943583418878 ~1989
29171183583423678 ~1989
29172179583443598 ~1989
291721792333774339
29172623583452478 ~1989
291727134084179839 ~1991
29172959583459198 ~1989
291729731750378399 ~1990
29172989140030347310 ~1993
29173031583460638 ~1989
29173439583468798 ~1989
29173451583469038 ~1989
29173643583472878 ~1989
29174819583496398 ~1989
29175491583509838 ~1989
29176883583537678 ~1989
29177279583545598 ~1989
291781811750690879 ~1990
29178503583570078 ~1989
29178599583571998 ~1989
29178659583573198 ~1989
291787072334296579 ~1991
29179043583580878 ~1989
29179211583584238 ~1989
Exponent Prime Factor Digits Year
291794418753832319 ~1992
29180471583609438 ~1989
291807371750844239 ~1990
29181023583620478 ~1989
291816432918164319 ~1991
291816534085431439 ~1991
291816971750901839 ~1990
291824712918247119 ~1991
29182619583652398 ~1989
29183461204284227110 ~1993
29183471583669438 ~1989
29183783583675678 ~1989
291837894085730479 ~1991
291840172334721379 ~1991
29184059583681198 ~1989
29184191583683838 ~1989
29184719583694398 ~1989
29184839583696798 ~1989
29185703583714078 ~1989
291857211751143279 ~1990
29185763583715278 ~1989
291864475253560479 ~1992
291864534086103439 ~1991
291871577004917699 ~1992
29187479583749598 ~1989
Home
4.768.925 digits
e-mail
25-05-04